Special 2-joins

Jake Horsfield

Based on joint work with: Myriam Preissmann Cléophée Robin Ni Luh Dewi Sintiari Nicolas Trotignon Kristina Vušković A *cutset* is any set of vertices or edges whose removal disconnects the graph.

A *cutset* is any set of vertices or edges whose removal disconnects the graph.

A *clique* is a set of pairwise adjacent vertices.

A *clique cutset* is a cutset that is a clique.

A *hole* is a chordless cycle of length at least 4.

C_k = the class of graphs G such that every hole of G is of length k.

Goal Every graph in C_k is either "basic" or has a clique cutset.

So the question is: what are the "basic" graphs?

 C_k = the class of graphs G such that every hole of G is of length k.

Goal

Every graph in C_k is either "basic" or has a clique cutset, for odd $k \ge 7$.

• So from now on, k is assumed to be odd and at least 7.

So the question is: what are the "basic" graphs?

Contains:

- Chordal graphs (they contain no holes)
- Hole of length k

 C_k is a subclass of even-hole-free graphs.

Fact

If H is a hole in a ring of length k, then H is of length k.

So the rings of length k belong to C_k .

• Pyramids whose 3 paths are of the same length belong to C_k , for some k.

- Pyramids whose 3 paths are of the same length belong to C_k, for some k.
- All holes in such a pyramid are of odd length.

Generalisations of pyramids

Generalisations of pyramids

As a consequence of a result of Boncompagni, Penev and Vušković:

Lemma

If $G \in \mathcal{C}_k$ and G contains no pyramid, then

- G is an odd ring together with a universal clique, or
- G has a clique cutset.

Generalising pyramids

Generalising pyramids

Generalising pyramids

Build a threshold graph with vertex set A.

- Build a threshold graph with vertex set A.
- Take the complement of G[A]; call its vertex set A'.

- Build a threshold graph with vertex set A.
- Take the complement of G[A]; call its vertex set A'.
- Solution Connect each vertex of A to its corresponding vertex in A' with a path of length ℓ ≥ 2.

- Build a threshold graph with vertex set A.
- Take the complement of G[A]; call its vertex set A'.
- Solution Connect each vertex of A to its corresponding vertex in A' with a path of length ℓ ≥ 2.
- If some vertex of G[A] (resp. G[A']) is isolated, then add a vertex that is complete to A (resp. A').

- Build a threshold graph with vertex set A.
- Take the complement of G[A]; call its vertex set A'.
- Solution Connect each vertex of A to its corresponding vertex in A' with a path of length ℓ ≥ 2.
- If some vertex of G[A] (resp. G[A']) is isolated, then add a vertex that is complete to A (resp. A').
- Possibly add some more vertices by considering a certain type of hypergraph on A (resp. A').

Blowing up templates

Blowing up templates

Blowing up templates

Theorem

For every odd $k \ge 7$, every graph G in C_k is

- a ring,
- or a blowup of a template,

- a universal vertex
- or a clique cutset.

Theorem

For every odd $k \ge 7$, every graph G in C_k is

- a ring,
- or a blowup of a template,

- a universal vertex
- or a clique cutset.

Theorem

For every odd $k \ge 7$, every graph G in C_k is

- a ring,
- or a blowup of a template,

- a universal vertex
- or a clique cutset.

Theorem

For every odd $k \ge 7$, every graph G in C_k is

- a ring,
- or a blowup of a template,

or has

• a universal vertex

• or a clique cutset.

Theorem

For every odd $k \ge 7$, every graph G in C_k is

- a ring,
- or a blowup of a template,

- a universal vertex
- or a clique cutset.

Given a graph G, decide whether $G \in C_k$ for some odd $k \ge 7$.

Given a graph G, decide whether $G \in C_k$ for some odd $k \ge 7$.

There is a (roughly) $\mathcal{O}(n^{18})$ time algorithm as a consequence of:

Theorem (Berger, Seymour and Spirkl)

Given a graph G and vertices u and v, one can decide in $\mathcal{O}(|G|^{18})$ time whether there is an induced path from u to v that is longer than a shortest path.

Given a graph G, decide whether $G \in C_k$ for some odd $k \ge 7$.

There is a (roughly) $\mathcal{O}(n^{18})$ time algorithm as a consequence of:

Theorem (Berger, Seymour and Spirkl)

Given a graph G and vertices u and v, one can decide in $\mathcal{O}(|G|^{18})$ time whether there is an induced path from u to v that is longer than a shortest path.

We use "special" 2-joins to obtain a more efficient algorithm.

• (X_1, X_2) partition of V(G)

- (X_1, X_2) partition of V(G)
- A₁, A₂, B₁, B₂ nonempty and pairwise disjoint

- (X_1, X_2) partition of V(G)
- A₁, A₂, B₁, B₂ nonempty and pairwise disjoint
- A_1 is complete to A_2

- (X_1, X_2) partition of V(G)
- A₁, A₂, B₁, B₂ nonempty and pairwise disjoint
- A_1 is complete to A_2
- B_1 is complete to B_2

- (X_1, X_2) partition of V(G)
- A₁, A₂, B₁, B₂ nonempty and pairwise disjoint
- A_1 is complete to A_2
- B_1 is complete to B_2
- There are no other edges between X₁ and X₂

- (X_1, X_2) partition of V(G)
- A₁, A₂, B₁, B₂ nonempty and pairwise disjoint
- A_1 is complete to A_2
- B_1 is complete to B_2
- There are no other edges between X₁ and X₂
- ... couple more conditions

2-joins example

Decomposition tree

Goal

G has property *P* if and only if each of the leaves (G_1, \ldots, G_4) has property *P*.

Blocks of decomposition

Blocks of decomposition

Blocks of decomposition example

Blocks of decomposition example

- Not always class-preserving (a graph may not belong to C_k but its blocks of decomposition do)
- Not all templates have 2-joins but they have a "2-join-like" decomposition.

- A_1 and B_1 are cliques
- At least one of *G*[*A*₂] and *G*[*B*₂] contains a universal vertex

- A_1 , A_2 , B_1 and B_2 are cliques
- A₁ and A₂ are nested
- B_1 is complete to B_2
- Some vertex of X₂ \ A₂ is complete to A₂

Lemma

Let G be a graph and let (X_1, X_2) be a special 2-join (of type 1 or 2) of G. Let G_1 and G_2 be the blocks of decomposition of G w.r.t. (X_1, X_2) . Then $G \in C_k$ if and only if $G_1, G_2 \in C_k$ (for all $k \ge 5$).

 $G_1 = G[X_1 \cup \mathbf{P}]$

Theorem

For every odd $k \ge 7$, every graph G in C_k is:

- a ring
- or a pyramid,

or has

- a universal vertex,
- a clique cutset,
- or a special 2-join (of type 1 or 2).

• Guess vertices a_1 , a_2 , b_1 , b_2 and u.

• Set $A_1 = N(a_2)$ and $B_1 = N(b_2)$.

• Set
$$A_2 = \{x \in X_2 : N(x) \cap A_1 \neq \emptyset\}$$

• Set
$$B_2 = \{x \in X_2 : N(x) \cap B_1 \neq \emptyset\}$$

u

If there is a special 2-join of type 1 with $a_1, b_1, u \in X_1$ and $a_2, b_2 \in X_2$, then the following rules *must* be applied.

If $x \in X_2$ has neighbours in both A_1 and B_1 , then move x to X_1 .

If $x \in A_2$ but is not complete to A_1 , then move x to X_1 .

If $x \in A_2 \setminus \{a_2\}$ and is nonadjacent to a_2 , then move x to X_1 .

Once no more rules can be applied, check whether A_1 and B_1 are cliques + some other check.

Given a graph G, decide whether $G \in C_k$ for some odd $k \ge 7$.

Something like $\mathcal{O}(n^8)$ — exact details in the works!

- C_k = the class of graphs G such that every hole of G is of length k.
- A decomposition theorem for graphs in C_k , for odd $k \ge 7$.
- A decomposition-based recognition algorithm for this class using two variations on 2-joins.

- C_k = the class of graphs G such that every hole of G is of length k.
- A decomposition theorem for graphs in C_k , for odd $k \ge 7$.
- A decomposition-based recognition algorithm for this class using two variations on 2-joins.

thanks for listening 😀