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Cutsets

A cutset is any set of vertices or edges whose removal disconnects the
graph.
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Clique cutsets

A clique is a set of pairwise adjacent vertices.

A clique cutset is a cutset that is a clique.



Holes

A hole is a chordless cycle of length at least 4.



The class Ck

Ck = the class of graphs G such that every hole of G is of length k .

Goal

Every graph in Ck is either “basic” or has a clique cutset.

So the question is: what are the “basic” graphs?



The class Ck

Ck = the class of graphs G such that every hole of G is of length k .

Goal

Every graph in Ck is either “basic” or has a clique cutset, for odd k ≥ 7.

So from now on, k is assumed to be odd and at least 7.

So the question is: what are the “basic” graphs?



The class Ck

Contains:

Chordal graphs (they contain no holes)

Hole of length k

Ck is a subclass of even-hole-free graphs.



Rings: a generalisation of a hole
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Rings
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Fact

If H is a hole in a ring of length k, then H is of length k.

So the rings of length k belong to Ck .



Pyramids

Pyramids whose 3 paths are of the same length belong to Ck , for
some k .

All holes in such a pyramid are of odd length.
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Graphs containing no pyramid

As a consequence of a result of Boncompagni, Penev and Vušković:

ring clique

Lemma

If G ∈ Ck and G contains no pyramid, then

G is an odd ring together with a universal clique, or

G has a clique cutset.
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Templates

1 Build a threshold graph with
vertex set A.

P4 C4 2K2

2 Take the complement of G [A];
call its vertex set A′.

3 Connect each vertex of A to its
corresponding vertex in A′ with
a path of length ` ≥ 2.

4 If some vertex of G [A] (resp.
G [A′]) is isolated, then add a
vertex that is complete to A
(resp. A′).

5 Possibly add some more vertices
by considering a certain type of
hypergraph on A (resp. A′).
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Decomposition theorem

Theorem

For every odd k ≥ 7, every graph G in Ck is

a ring,

or a blowup of a template,

or has

a universal vertex

or a clique cutset.
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Decomposition theorem
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The recognition problem

Problem

Given a graph G , decide whether G ∈ Ck for some odd k ≥ 7.

There is a (roughly) O(n18) time algorithm as a consequence of:

Theorem (Berger, Seymour and Spirkl)

Given a graph G and vertices u and v , one can decide in O(|G |18) time
whether there is an induced path from u to v that is longer than a shortest
path.

We use “special” 2-joins to obtain a more efficient algorithm.
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2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

A1 A2

B1 B2

X1 X2

(X1,X2) partition of V (G )

A1, A2, B1, B2 nonempty and
pairwise disjoint

A1 is complete to A2

B1 is complete to B2

There are no other edges
between X1 and X2

. . . couple more conditions
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A1 A2

B1 B2

X1 X2
(X1,X2) partition of V (G )

A1, A2, B1, B2 nonempty and
pairwise disjoint

A1 is complete to A2

B1 is complete to B2

There are no other edges
between X1 and X2

. . . couple more conditions



2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.
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2-joins example
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Decomposition tree

G

G1 G2 G3 G4

Goal

G has property P if and only if each of the leaves (G1, . . . ,G4) has
property P.



Blocks of decomposition

A1

B1

X1

...
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Blocks of decomposition

A2

B2

X2

...

a1 ∈ A1

b1 ∈ B1

G2 = G[X2 ∪ P ]

P
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Blocks of decomposition example

A1

B1

X1 P



The problem with “normal” 2-joins

Not always class-preserving (a graph may not belong to Ck but its
blocks of decomposition do)

Not all templates have 2-joins – but they have a “2-join-like”
decomposition.



Special 2-joins of type 1
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Special 2-joins of type 1

A1 A2

B1 B2

X1 X2

A1 and B1 are cliques

At least one of G [A2] and G [B2]
contains a universal vertex
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Special 2-joins of type 2

A1 A2

B1 B2

X1 X2

A1, A2, B1 and B2 are cliques

A1 and A2 are nested

B1 is complete to B2

Some vertex of X2 \ A2 is
complete to A2



Special 2-joins are useful

Lemma

Let G be a graph and let (X1,X2) be a special 2-join (of type 1 or 2) of G .
Let G1 and G2 be the blocks of decomposition of G w.r.t. (X1,X2). Then
G ∈ Ck if and only if G1,G2 ∈ Ck (for all k ≥ 5).

A1

B1

X1

...

a2 ∈ A2

b2 ∈ B2

G1 = G[X1 ∪ P ]

P



Decomposition theorem II

Theorem

For every odd k ≥ 7, every graph G in Ck is:

a ring

or a pyramid,

or has

a universal vertex,

a clique cutset,

or a special 2-join (of type 1 or 2).



Detecting special 2-joins of type 1

a1 a2

b1 b2

u Guess vertices a1, a2, b1, b2 and u.



Detecting special 2-joins of type 1

a1 a2

b1 b2

u

A1 A2

B1 B2

Set A1 = N(a2) and B1 = N(b2).

Set A2 = {x ∈ X2 : N(x) ∩ A1 6= ∅}
Set B2 = {x ∈ X2 : N(x) ∩ B1 6= ∅}



Detecting special 2-joins of type 1

a1 a2

b1 b2

u

A1 A2

B1 B2

X1 X2

If there is a special 2-join of type 1 with
a1, b1, u ∈ X1 and a2, b2 ∈ X2, then the
following rules must be applied.



Detecting special 2-joins of type 1

a1 a2

b1 b2

u

A1 A2

B1 B2

X1 X2

If x ∈ X2 has neighbours in both A1 and
B1, then move x to X1.



Detecting special 2-joins of type 1

a1 a2

b1 b2

u

A1 A2

B1 B2

X1 X2

If x ∈ A2 but is not complete to A1,
then move x to X1.



Detecting special 2-joins of type 1

a1 a2

b1 b2

u

A1 A2

B1 B2

X1 X2

If x ∈ A2 \ {a2} and is nonadjacent to
a2, then move x to X1.



Detecting special 2-joins of type 1

a1 a2

b1 b2

u

A1 A2

B1 B2

X1 X2

Once no more rules can be applied,
check whether A1 and B1 are cliques +
some other check.



Time complexity

Problem

Given a graph G , decide whether G ∈ Ck for some odd k ≥ 7.

Something like O(n8) — exact details in the works!



Summary

Ck = the class of graphs G such that every hole of G is of length k.

A decomposition theorem for graphs in Ck , for odd k ≥ 7.

A decomposition-based recognition algorithm for this class using two
variations on 2-joins.

thanks for listening
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