Special 2-joins

Jake Horsfield

Based on joint work with:
Myriam Preissmann Cléophée Robin Ni Luh Dewi Sintiari Nicolas Trotignon Kristina Vušković

Cutsets

A cutset is any set of vertices or edges whose removal disconnects the graph.

Cutsets

A cutset is any set of vertices or edges whose removal disconnects the graph.

Clique cutsets

A clique is a set of pairwise adjacent vertices.

A clique cutset is a cutset that is a clique.

Holes

A hole is a chordless cycle of length at least 4.

The class \mathcal{C}_{k}

$\mathcal{C}_{k}=$ the class of graphs G such that every hole of G is of length k.

Goal

Every graph in \mathcal{C}_{k} is either "basic" or has a clique cutset.

So the question is: what are the "basic" graphs?

The class \mathcal{C}_{k}

$\mathcal{C}_{k}=$ the class of graphs G such that every hole of G is of length k.

Goal

Every graph in \mathcal{C}_{k} is either "basic" or has a clique cutset, for odd $k \geq 7$.

- So from now on, k is assumed to be odd and at least 7 .

So the question is: what are the "basic" graphs?

The class \mathcal{C}_{k}

Contains:

- Chordal graphs (they contain no holes)
- Hole of length k
\mathcal{C}_{k} is a subclass of even-hole-free graphs.

Rings: a generalisation of a hole

Rings: a generalisation of a hole

Rings: a generalisation of a hole

Rings: a generalisation of a hole

Rings: a generalisation of a hole

Rings

Fact

If H is a hole in a ring of length k, then H is of length k.
So the rings of length k belong to \mathcal{C}_{k}.

Pyramids

- Pyramids whose 3 paths are of the same length belong to \mathcal{C}_{k}, for some k.

Pyramids

- Pyramids whose 3 paths are of the same length belong to \mathcal{C}_{k}, for some k.
- All holes in such a pyramid are of odd length.
Δ

Generalisations of pyramids

Graphs containing no pyramid

As a consequence of a result of Boncompagni, Penev and Vušković:

Lemma

If $G \in \mathcal{C}_{k}$ and G contains no pyramid, then

- G is an odd ring together with a universal clique, or
- G has a clique cutset.

Generalising pyramids

Generalising pyramids

Generalising pyramids

Templates

(1) Build a threshold graph with vertex set A.

Templates

(1) Build a threshold graph with vertex set A.
(2) Take the complement of $G[A]$; call its vertex set A^{\prime}.

Templates

(1) Build a threshold graph with vertex set A.
(2) Take the complement of $G[A]$; call its vertex set A^{\prime}.
(3) Connect each vertex of A to its corresponding vertex in A^{\prime} with a path of length $\ell \geq 2$.

Templates

(1) Build a threshold graph with vertex set A.
(2) Take the complement of $G[A]$; call its vertex set A^{\prime}.
(3) Connect each vertex of A to its corresponding vertex in A^{\prime} with a path of length $\ell \geq 2$.
(4) If some vertex of $G[A]$ (resp. $\left.G\left[A^{\prime}\right]\right)$ is isolated, then add a vertex that is complete to A (resp. A^{\prime}).

Templates

(1) Build a threshold graph with vertex set A.
(2) Take the complement of $G[A]$; call its vertex set A^{\prime}.
(3) Connect each vertex of A to its corresponding vertex in A^{\prime} with a path of length $\ell \geq 2$.
(4) If some vertex of $G[A]$ (resp. $\left.G\left[A^{\prime}\right]\right)$ is isolated, then add a vertex that is complete to A (resp. A^{\prime}).
(6) Possibly add some more vertices by considering a certain type of hypergraph on A (resp. A^{\prime}).

Blowing up templates

Blowing up templates

Blowing up templates

Decomposition theorem

Theorem

For every odd $k \geq 7$, every graph G in \mathcal{C}_{k} is

- a ring,
- or a blowup of a template, or has
- a universal vertex
- or a clique cutset.

Decomposition theorem

Theorem

For every odd $k \geq 7$, every graph G in \mathcal{C}_{k} is

- a ring,
- or a blowup of a template,
or has
- a universal vertex
- or a clique cutset.

Decomposition theorem

Theorem

For every odd $k \geq 7$, every graph G in \mathcal{C}_{k} is

- a ring,
- or a blowup of a template,
or has
- a universal vertex
- or a clique cutset.

Decomposition theorem

Theorem

For every odd $k \geq 7$, every graph G in \mathcal{C}_{k} is

- a ring,
- or a blowup of a template, or has
- a universal vertex
- or a clique cutset.

Decomposition theorem

Theorem

For every odd $k \geq 7$, every graph G in \mathcal{C}_{k} is

- a ring,
- or a blowup of a template, or has
- a universal vertex
- or a clique cutset.

The recognition problem

Problem

Given a graph G, decide whether $G \in \mathcal{C}_{k}$ for some odd $k \geq 7$.

The recognition problem

Problem

Given a graph G, decide whether $G \in \mathcal{C}_{k}$ for some odd $k \geq 7$.

There is a (roughly) $\mathcal{O}\left(n^{18}\right)$ time algorithm as a consequence of:

Theorem (Berger, Seymour and Spirkl)

Given a graph G and vertices u and v, one can decide in $\mathcal{O}\left(|G|^{18}\right)$ time whether there is an induced path from u to v that is longer than a shortest path.

The recognition problem

Problem

Given a graph G, decide whether $G \in \mathcal{C}_{k}$ for some odd $k \geq 7$.

There is a (roughly) $\mathcal{O}\left(n^{18}\right)$ time algorithm as a consequence of:

Theorem (Berger, Seymour and Spirkl)

Given a graph G and vertices u and v, one can decide in $\mathcal{O}\left(|G|^{18}\right)$ time whether there is an induced path from u to v that is longer than a shortest path.

We use "special" 2-joins to obtain a more efficient algorithm.

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

- $\left(X_{1}, X_{2}\right)$ partition of $V(G)$

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

- $\left(X_{1}, X_{2}\right)$ partition of $V(G)$
- $A_{1}, A_{2}, B_{1}, B_{2}$ nonempty and pairwise disjoint

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

- $\left(X_{1}, X_{2}\right)$ partition of $V(G)$
- $A_{1}, A_{2}, B_{1}, B_{2}$ nonempty and pairwise disjoint
- A_{1} is complete to A_{2}

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

- $\left(X_{1}, X_{2}\right)$ partition of $V(G)$
- $A_{1}, A_{2}, B_{1}, B_{2}$ nonempty and pairwise disjoint
- A_{1} is complete to A_{2}
- B_{1} is complete to B_{2}

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

- $\left(X_{1}, X_{2}\right)$ partition of $V(G)$
- $A_{1}, A_{2}, B_{1}, B_{2}$ nonempty and pairwise disjoint
- A_{1} is complete to A_{2}
- B_{1} is complete to B_{2}
- There are no other edges between X_{1} and X_{2}

2-joins

An edge cutset introduced by Cornuéjols and Cunningham in 1985.

- $\left(X_{1}, X_{2}\right)$ partition of $V(G)$
- $A_{1}, A_{2}, B_{1}, B_{2}$ nonempty and pairwise disjoint
- A_{1} is complete to A_{2}
- B_{1} is complete to B_{2}
- There are no other edges between X_{1} and X_{2}
- ... couple more conditions

2-joins example

Decomposition tree

Goal

G has property P if and only if each of the leaves $\left(G_{1}, \ldots, G_{4}\right)$ has property P.

Blocks of decomposition

Blocks of decomposition

$$
G_{2}=G\left[X_{2} \cup P\right]
$$

Blocks of decomposition example

Blocks of decomposition example

The problem with "normal" 2-joins

- Not always class-preserving (a graph may not belong to \mathcal{C}_{k} but its blocks of decomposition do)
- Not all templates have 2-joins - but they have a " 2 -join-like" decomposition.

Special 2-joins of type 1

Special 2-joins of type 1

- A_{1} and B_{1} are cliques
- At least one of $G\left[A_{2}\right]$ and $G\left[B_{2}\right]$ contains a universal vertex

Special 2-joins of type 2

Special 2-joins of type 2

- A_{1}, A_{2}, B_{1} and B_{2} are cliques
- A_{1} and A_{2} are nested
- B_{1} is complete to B_{2}
- Some vertex of $X_{2} \backslash A_{2}$ is complete to A_{2}

Special 2-joins are useful

Lemma

Let G be a graph and let $\left(X_{1}, X_{2}\right)$ be a special 2-join (of type 1 or 2) of G. Let G_{1} and G_{2} be the blocks of decomposition of G w.r.t. $\left(X_{1}, X_{2}\right)$. Then $G \in \mathcal{C}_{k}$ if and only if $G_{1}, G_{2} \in \mathcal{C}_{k}$ (for all $k \geq 5$).

$$
G_{1}=G\left[X_{1} \cup P\right]
$$

Decomposition theorem II

Theorem

For every odd $k \geq 7$, every graph G in \mathcal{C}_{k} is:

- a ring
- or a pyramid, or has
- a universal vertex,
- a clique cutset,
- or a special 2-join (of type 1 or 2).

Detecting special 2-joins of type 1

- Guess vertices $a_{1}, a_{2}, b_{1}, b_{2}$ and u.

Detecting special 2-joins of type 1

- Set $A_{1}=N\left(a_{2}\right)$ and $B_{1}=N\left(b_{2}\right)$.
- Set $A_{2}=\left\{x \in X_{2}: N(x) \cap A_{1} \neq \emptyset\right\}$
- Set $B_{2}=\left\{x \in X_{2}: N(x) \cap B_{1} \neq \emptyset\right\}$

Detecting special 2-joins of type 1

If there is a special 2 -join of type 1 with $a_{1}, b_{1}, u \in X_{1}$ and $a_{2}, b_{2} \in X_{2}$, then the following rules must be applied.

Detecting special 2-joins of type 1

If $x \in X_{2}$ has neighbours in both A_{1} and B_{1}, then move x to X_{1}.

Detecting special 2-joins of type 1

If $x \in A_{2}$ but is not complete to A_{1}, then move x to X_{1}.

Detecting special 2-joins of type 1

Detecting special 2-joins of type 1

Once no more rules can be applied, check whether A_{1} and B_{1} are cliques + some other check.

Time complexity

Problem

Given a graph G, decide whether $G \in \mathcal{C}_{k}$ for some odd $k \geq 7$.

Something like $\mathcal{O}\left(n^{8}\right)$ - exact details in the works!

Summary

- $\mathcal{C}_{k}=$ the class of graphs G such that every hole of G is of length k.
- A decomposition theorem for graphs in \mathcal{C}_{k}, for odd $k \geq 7$.
- A decomposition-based recognition algorithm for this class using two variations on 2-joins.

Summary

- $\mathcal{C}_{k}=$ the class of graphs G such that every hole of G is of length k.
- A decomposition theorem for graphs in \mathcal{C}_{k}, for odd $k \geq 7$.
- A decomposition-based recognition algorithm for this class using two variations on 2-joins.
thanks for listening (3)

